Differential regulation of the Na+-Ca2+ exchanger 3 (NCX3) by protein kinase PKC and PKA.

نویسندگان

  • Lauriane Y M Michel
  • Sjoerd Verkaart
  • Femke Latta
  • Joost G J Hoenderop
  • René J M Bindels
چکیده

Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purinergic stimulation of K+-dependent Na+/Ca2+ exchanger isoform 4 requires dual activation by PKC and CaMKII

K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from ...

متن کامل

Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3).

Three distinct mammalian Na+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken a detailed functional comparison of these three exchangers. Each exchanger was stably expressed at high levels in the plasma membranes of BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+g...

متن کامل

The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway.

The proteins NCX1, NCX2, and NCX3 expressed on the plasma membrane of neurons play a crucial role in ionic regulation because they are the major bidirectional system promoting the efflux and influx of Na(+) and Ca(2+) ions. Here, we demonstrate that NCX1 and NCX3 proteins are novel additional targets for the survival action of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. Indeed, the d...

متن کامل

In vivo regulation of Na/Ca exchanger expression by adrenergic effectors.

The Na/Ca exchanger encoded by the NCX1 gene plays an important role in calcium homeostasis in cardiac muscle. We previously identified three in vitro signaling pathways that are of major importance in the regulation of Na/Ca exchanger gene expression in neonatal cardiac myocytes, the protein kinase A (PKA) and protein kinase C (PKC) pathways, and intracellular Ca(2+). To determine whether thes...

متن کامل

Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.

In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell calcium

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2017